――量子情報処理技術への応用に期待――
○発表のポイント:
- 半導体量子ドットと呼ばれる電子の個数が制御可能なナノ構造を導入することで、たった数個の電子とテラヘルツ電磁波とのハイブリッドな量子状態を生成・観測した。
- テラヘルツ電磁波と電子の両方を半導体ナノ構造中に閉じ込めることにより、非常に強く相互作用させ、光と電子の両方の性質を併せ持ったハイブリッドな量子状態を実現した。
- ハイブリッドな量子状態を用いることにより、電子が持つ量子情報を、テラヘルツ電磁波を介して遠方に運ぶことができるため、半導体量子ビット間の集積回路基板上での量子情報の伝送や、そのような技術をさらに発展させて、大規模固体量子コンピュータへの応用が期待される。
○概要:
東京大学 生産技術研究所の黒山 和幸 助教、平川 一彦 教授らによる研究グループおよび、同大学 ナノ量子情報エレクトロニクス研究機構の荒川 泰彦 特任教授、權 晋寛 特任准教授らによる研究グループは、スプリットリング共振器(注1)と呼ばれるテラヘルツ帯域に共鳴周波数を持つ半導体基板上に作製した光共振器と半導体量子ドット(注2)中に閉じ込めた電子を強く相互作用させ、光と電子の両方の性質を持つハイブリッドな量子結合状態を生成することに成功しました。
本研究では、GaAs(ヒ化ガリウム)半導体量子ドットの中に閉じ込められた電子と半導体基板上に作製されたテラヘルツ光共振器との間の強結合状態を、量子ドットを流れる電流を測定することによって観測しました。先行研究では、GaAs半導体中の多数の2次元電子(注3)集団とテラヘルツ光共振器の間で強結合状態が実現することが知られていました。しかし、量子情報処理技術などへの応用を見据えると、電子集団ではなく、単一の電子と光共振器との強結合状態の実現が望まれています。本研究では、GaAs 2次元電子系上に半導体量子ドットを形成することで、半導体量子ドットの中の電子数を数個程度に制御したうえで、電子とテラヘルツ光共振器との強結合状態の観測に成功しました。この研究成果は、光と物質の結合状態に関する物理の解明に大きく貢献するだけでなく、半導体量子ドットを基盤とした固体量子コンピュータの大規模化に繋がる可能性を秘めています。それにより、従来よりもはるかに高速な情報処理技術や、高温超伝導物質の探索、高機能な化学材料の開発などにつながると期待されます。
この情報へのアクセスはメンバーに限定されています。ログインしてください。メンバー登録は下記リンクをクリックしてください。