――半導体分野におけるガラスの微細加工に革新―― 発表のポイント ガラスなどの加工の難しい材料を、従来の100万倍高速で、なおかつ超精密に加工できる手法を開発しました。 ピコ秒(10のマイナス12乗秒)という極短時間だけ
続きを読む
――半導体分野におけるガラスの微細加工に革新―― 発表のポイント ガラスなどの加工の難しい材料を、従来の100万倍高速で、なおかつ超精密に加工できる手法を開発しました。 ピコ秒(10のマイナス12乗秒)という極短時間だけ
続きを読む—— テラヘルツから深紫外までの領域で98%以上の吸収率を実現—— 発表のポイント シリコンで作製したモスアイ構造を厚さ100 nmのカーボン薄膜でコートすることで、1〜1200 THzの超広幅領域にわたり98%以上の
続きを読む~広帯域増幅器を用いて世界最速280Gbpsの高出力信号生成に成功~ 2025年6月16日 日本電信電話株式会社NTTイノベーティブデバイス株式会社Keysight Technologies, Inc. 300GHz帯の
続きを読む#LiDAR 日本語で読みたい方は、 google chromeで開き、 画面上で右クリックをして、「日本語に翻訳」をクリックしてください Unlike birds, which navigate unknown env
続きを読む日本語で読みたい方は、 google chromeで開き、 画面上で右クリックをして、「日本語に翻訳」をクリックしてください #LiDAR SHENZHEN, China, April 21, 2025 — RoboSe
続きを読む#LiDAR 日本語で読みたい方は、 google chromeで開き、 画面上で右クリックをして、「日本語に翻訳」をクリックしてください As autonomous driving enters a new phase
続きを読む日本語で読みたい方は、 google chromeで開き、 画面上で右クリックをして、「日本語に翻訳」をクリックしてください 3D sensor technologies can now be even more pre
続きを読む~テラヘルツ波ケミカル顕微鏡が明らかにした脂肪代謝の新メカニズム~ ◆発表のポイント 本研究は、中国・厦門大学附属病院との国際共同研究により実施されました。 テラヘルツ波ケミカル顕微鏡(TCM)を病理研究の
続きを読む発表のポイント 次世代半導体の回路基板と目されているガラス基板に対し、直径10マイクロメートル以下の微細穴あけ加工を深紫外レーザーで実現しました。 深紫外領域の超短パルスレーザーを用いることで、ガラス基板に対し、配線用に
続きを読む株式会社光響は、このたびExail社の高精度パルスジェネレータ「EPG-LAB-30ps」の取り扱いを開始いたしました。 「EPG-LAB-30ps」は、パルス幅30〜100 ps、15ピコ秒の立ち上がり・立ち下がり時間
続きを読む