【本研究成果のポイント】 ⚫ ゴルジ体(※1)は、細胞内で作られたタンパク質を受け取り、それを必要な場所に送り出す役割を持つ、重要な細胞内小器官(※2)です。 ⚫ 本研究では、光を使って細胞内
続きを読む![](https://optinews.info/wp-content/uploads/2024/12/fa69aae7f7227bfb9d9c114b2f52a904-e1734930613402.png)
【本研究成果のポイント】 ⚫ ゴルジ体(※1)は、細胞内で作られたタンパク質を受け取り、それを必要な場所に送り出す役割を持つ、重要な細胞内小器官(※2)です。 ⚫ 本研究では、光を使って細胞内
続きを読む2024年12月6日 報道関係者各位 慶應義塾大学 愛知医科大学 国立大学法人筑波大学 -変性タンパク質を指標とした、新たな非染色可視化法- 慶應義塾大学理工学部の加納英明教授、愛知医科大学医学部の猪子誠人講師、筑波大
続きを読むウェーハの欠陥検査のスループット向上および化学情報可視化の実現に貢献 株式会社日立ハイテク(以下、日立ハイテク)は、国立大学法人東京大学(以下、東京大学)が開発した高分解能Laser-PEEM*1の半導体製造プロセスへの
続きを読む―光合成可能な動物細胞作製の突破口を開く― 東京大学 理化学研究所 東京理科大学 早稲田大学 科学技術振興機構(JST) 発表のポイント ◆藻類から光合成活性を持つ葉緑体を取り出し、ハムスターの培養細胞内に移植することに
続きを読む発表のポイント 蛍光の強度を測定する一般的な蛍光顕微鏡とは異なり、蛍光物質の発光寿命を測定できる世界最高速の蛍光寿命顕微鏡を開発しました。 開発した蛍光寿命顕微鏡を用いて、微小流路を流れる細胞を10,000細胞/秒を超え
続きを読む― 個人研究者によるDIY構築が可能な光シート顕微鏡の提案 ― 順天堂大学 大学院医学研究科 生化学・生体システム医科学の大友康平 准教授、大村鷹希 研究員、洲﨑悦生 主任教授、自然科学研究機構 生命創成探究センター/生
続きを読む「肌の弾力維持に関する新事実」を発見 株式会社ファンケルは、「生体の組織が見える透明化技術」を皮膚に応用して真皮の弾性線維の立体構造を解析し、加齢による変化について研究を行いました。その結果、しわやたるみの原因となる加
続きを読む走査電子顕微鏡とフェムト秒レーザーを組み合わせ、物質の瞬間的な状態を観察できる超高速時間分解走査電子顕微鏡計測装置を開発しました。これを用いて、半導体GaAs(ガリウムヒ素)基板のデバイス上での金属電極の周囲の電位変化
続きを読む~生体内の深部組織観察や非破壊検査の進展に寄与~ 研究の要旨とポイント スーパーコンティニューム光源(*1)と音響光学可変フィルター(*2)を用いて、可視光~近赤外光の範囲(490~1600nm)でハイパースペクトルイメ
続きを読む―ファインセラミックスのプロセス・インフォマティクス構築を目指す― NEDOと国立研究開発法人産業技術総合研究所(産総研)は、ファインセラミックスのプロセス・インフォマティクス(PI)の構築を目指して、「次世代ファイン
続きを読む